

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 1

INFCCC

CLEAN DEVELOPMENT MECHANISM SMALL-SCALE PROGRAM ACTIVITY DESIGN DOCUMENT FORM (CDM-SSC-CPA-DD) Version 01

CONTENTS

- A. General description of CDM programme activity (CPA)
- B. Eligibility of CPA and Estimation of Emission Reductions
- C. Environmental Analysis
- D. Stakeholder comments

Annexes

Annex 1: Contact information on entity/individual responsible for the CPA

Annex 2: Information regarding public funding

Annex 3: Baseline information

Annex 4: Monitoring plan

NOTE:

(i) This form is for submission of CPAs that apply a small-scale approved methodology using the provision of the proposed small scale CDM PoA.

(ii) The coordinating/managing entity shall prepare a CDM Small Scale Programme Activity Design Document (CDM-SSC-CPA-DD)^{1,2} that is specified to the proposed PoA by using the provisions stated in the SSC PoA DD. At the time of requesting registration the SSC PoA DD must be accompanied by a CDM-SSC CPA-DD form that has been specified for the proposed SSC PoA, as well as by one completed CDM-SSC CPA-DD (using a real case). After the first CPA, every CPA that is added over time to the SSC PoA must submit a completed CDM-SSC CPA-DD.

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

¹ The latest version of the template form CDM-CPA-DD is available on the UNFCCC CDM web site in the reference/document section.

² At the time of requesting validation/registration, the coordinating managing entity is required to submit a completed CDM-POA-DD, the PoA specific CDM-CPA-DD, as well as one of such CDM-CPA-DD completed (using a real case).

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 2

UNFCCC

SECTION A. General description of small scale CDM programme activity (CPA)

A.1. Title of the <u>small-scale CPA</u>:

[CPA name] - Under PoA Composting and Co-composting Programme of Activities (PoA) in Indonesia

Version [] Date: [date]

A.2. Description of the small-scale CPA:

The CPA developed by [XXX] (hereafter referred to as the "project developer") is a composting project in the province of [XXX], on the island of [XXX] in Indonesia (hereafter referred to as the "host country"). The project will be located at [XXX] palm oil mill.

[brief project description]

A.3. Entity/individual responsible for the <u>small-scale CPA</u>:

[company] is the responsible project implementer of the CPA.

A.4. Technical description of the small-scale CPA:

[Technical description of the CPA]

A.4.1. Identification of the <u>small-scale CPA</u>:

A.4.1.1. <u>Host Party</u>:

The host party of this CPA is Republic of Indonesia.

A.4.1.2. Geographic reference or other means of identification allowing the unique identification of the <u>small-scale CPA</u> (maximum one page):

The project will be located adjacent [location].

The geographical coordinates of the project activity are: [coordinates ... latitude, ... longitude]

The location of the project site is shown in the following map:

[map]

Figure 1 – Location map of the project site

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

Composting and Co-composting Programme of Activities (PoA) in Indonesia

UNFCCC

CDM – Executive Board

page 3

A.4.2. Duration of the <u>small-scale CPA</u>:

A.4.2.1. Starting date of the small-scale CPA:

The starting date of the CPA is [starting date].

Explanation on the choice of the project start date is being provided in section B.3.

A.4.2.2. Expected operational lifetime of the small-scale CPA:

The expected operational lifetime of this CPA is [lifetime] years.

A.4.3. Choice of the <u>crediting period</u> and related information:

Renewable crediting period.

A.4.3.1. Starting date of the crediting period:

The starting date of the crediting period is the registration date of the related CPA.

A.4.3.2. Length of the <u>crediting period</u>, <u>first crediting period if the choice is</u> <u>renewable CP</u>:

The length of the crediting period for this CPA is 7 years, and can be renewed for three periods of seven years.

A.4.4. Estimated amount of emission reductions over the chosen crediting period:

The estimated amount of emission reduction was calculated for the CPA from the equations described in the PoA-DD for the Composting and Co-composting Programme of Activities (PoA) in Indonesia. The table below demonstrates the total emission reduction estimated for the first crediting period for this proposed CPA.

Table 1- Estimated amount of emission reductions over the chosen crediting period

Years	Annual estimation of emission reductions in tonnes of tCO ₂ .eq
1	
2	
3	
4	
5	
6	
7	
Total emission reductions (tonnes of CO ₂ -eq)	

Composting and Co-composting Programme of Activities (PoA) in Indonesia

page 4

CDM – Executive Board

Total number of crediting years	7
Annual average over the crediting period of	
estimated reductions (tonnes of CO ₂ -eq)	

A.4.5. Public funding of the <u>CPA</u>:

The proposed CDM Programme Activities (CPA) does [yes/no] receive any public funding.

A.4.6. Information to confirm that the proposed <u>small-scale CPA</u> is not a <u>de-bundled</u> <u>component</u>

The "Guidance for determining the occurrence of de-bundling under a programme of activities (PoA)" (EB54 annex 13) is used to demonstrate that the CPA included in the PoA is not a de-bundled component of another CDM programme activity (CPA) or CDM project activity.

There is no other registered small-scale CPA of a PoA, an application to register another small-scale CPA of a PoA or another registered CDM project activity which:

a) has the [project implementer] as an activity implementer.

b) the boundary is within 1 km of the boundary of the proposed small-scale CPA, at the closest point.

Moreover, PT. Composting Program International does not manage another PoA of the same sectoral scope within Indonesia and palm oil mills are typically spread far apart to not camped in receiving Fresh Fruit Bunches (FFB).

However, in order to avoid registering a CPA that is in fact a de-bundled component of another CPA or CDM project activity, the coordinating entity will ensure that each CPA followed the aforementioned guidance as defined by the Executive Board and as discussed in the SSC-PoA-DD.

A.4.7. Confirmation that <u>small-scale CPA</u> is neither registered as an individual CDM project activity or is part of another Registered PoA:

The proposed CPA is not registered as an individual CDM project and is not part of another PoA.

SECTION B. Eligibility of small-scale CPA and Estimation of emissions reductions

B.1. Title and reference of the Registered PoA to which small-scale CPA is added:

Composting and Co-composting Programme of Activities (PoA) in Indonesia

B.2. Justification of the why the <u>small-scale CPA</u> is eligible to be included in the Registered PoA:

[CPA name] is eligible to be included to the Composting and Co-composting Programme of Activities (PoA) in Indonesia because it fulfils all eligibility requirement of the PoA:

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 5

 i. consist of only one composting or co- composting plant producing compost from palm oil mill waste, situated in Indonesia. Project shall be implemented at Palm Oil Mill site where no composting or co-composting activity was taking place before. ii. The requirements including applicability criteria of AMS-III.F version 8 will be met by CPA. iii. An agreement shall be in place between the co- composting project owner (CPA operator) and 	
composting plant producing compost from palm oil mill waste, situated in Indonesia. Project shall be implemented at Palm Oil Mill site where no composting or co-composting activity was taking place before.ii. The requirements including applicability criteria of AMS-III.F version 8 will be met by CPA.[XXX]iii. An agreement shall be in place between the co- composting project owner (CPA operator) and[XXX]	
oil mill waste, situated in Indonesia. Project shall be implemented at Palm Oil Mill site where no composting or co-composting activity was taking place before.ii. The requirements including applicability criteria 	
shall be implemented at Palm Oil Mill site where no composting or co-composting activity was taking place before. ii. The requirements including applicability criteria of AMS-III.F version 8 will be met by CPA. iii. An agreement shall be in place between the co- composting project owner (CPA operator) and	
where no composting or co-composting activity was taking place before. ii. The requirements including applicability criteria of AMS-III.F version 8 will be met by CPA. iii. An agreement shall be in place between the co-composting project owner (CPA operator) and	
was taking place before. ii. The requirements including applicability criteria of AMS-III.F version 8 will be met by CPA. iii. An agreement shall be in place between the co- composting project owner (CPA operator) and	
ii. The requirements including applicability criteria of AMS-III.F version 8 will be met by CPA. [XXX] iii. An agreement shall be in place between the co- composting project owner (CPA operator) and [XXX]	
of AMS-III.F version 8 will be met by CPA. iii. An agreement shall be in place between the co- composting project owner (CPA operator) and	
of AMS-III.F version 8 will be met by CPA. iii. An agreement shall be in place between the co- composting project owner (CPA operator) and	
iii. An agreement shall be in place between the co- composting project owner (CPA operator) and	
composting project owner (CPA operator) and	
the Coordinating and Managing Entity (CME),	
authorizing the CME to include the CPA into	
the PoA and therefore ceding the carbon rights	
to the CME.	
iv. prior to CPA implementation; where the EFB is [XXX]	
disposed in dumping site. The dumping site	
must have the capacity to accommodate EFB for	
the whole crediting period. Where the EFB is	
burnt or land applied, no baseline emission from	
solid waste will be claimed.	
v. prior to CPA implementation; POME must be [XXX]	
treated in anaerobic ponds without biogas	
recovery systems.	
vi. only EFB & POME will be composted out of all [XXX]	
the palm oil mill residues.	
vii. at the time of inclusion of the CPA in the [XXX]	
PoA, there is no enforced regulation in	
Indonesia that prohibits the current disposal of	
EFB in an unmanaged solid waste disposal	
site/landfilling and (for co-composting CPAs)	
there is no regulation to require the recovery of	
methane from anaerobic ponds treating POME.	
viii. residual waste or compost produced shall [XXX]	
not be stored under anaerobic conditions.	
ix. the maximum distance for transporting POME [XXX]	
and EFB for the composting process by the	
CPA is 200 km.	
x. must be in compliance with all laws and [XXX]	
regulations of Indonesia.	
xi. The CPA Operator shall demonstrate that this [XXX]	
project activity shall not lead to double counting	
of Emission Reduction by confirming that this	
project activity shall not be a part of any of the	
below mentioned category post approval of the	
project activity under CDM: (1) Standalone	
CDM project activity, (2) Bundled CDM project	
activity, (3) Another registered PoA.	

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 6

UNFCCC

xii. The Proposed CPA Project activity shall	[XXX]
demonstrate the compliance with the EB 54	
Annex 13 "Guidelines on assessment of de-	
bundling for SSC project activities". The CPA	
is considered as debundled if both conditions	
(a) and (b) below are satisfied:	
a. Has the same activity implementer	
as the proposed small scale CPA or	
has a coordinating or managing	
entity, which also manages a large	
scale PoA of the same	
technology/measure, and;	
b. The boundary is within 1 km of the	
boundary of the proposed small-	
scale CPA at the closest point.	

[CPA name] meets all the applicability criteria of AMS III-F as follows:

The applicability criteria of AMS III.F.v8	Methodology AMS III.F.v8 is applicable to a
	CPA because:
1. This methodology comprises measures to avoid	[XXX]
the emissions of methane to the atmosphere from	
biomass or other organic matter that would have	
otherwise been left to decay anaerobically in a	
solid waste disposal site (SWDS), or in an animal	
waste management system (AWMS). In the project	
activity, controlled biological treatment of biomass	
is introduced through one, or a combination, of the	
following measures:	
(a) aerobic treatment by composting and proper soil	
application of the compost.	
(b) Anaerobic digestion in closed reactors equipped	
with biogas recovery and	
combustion/flaring system.	
2. The project activity does not recover or combust	[XXX]
landfill gas from the disposal site (unlike III G) and	
does not undertake controlled combustion of the	
waste that is not treated biologically in a first step	
(unlike AMS III.E). Project activities that recover	
biogas from wastewater treatment shall use	
methodology AMS-III.H.	
3. Measures are limited to those that result in	[XXX]
emission reductions of less than or equal to 60 kt	
CO ₂ e annually	
4. This methodology is applicable to the treatment	[XXX]
of the organic fraction of municipal solid waste and	

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 7

UNFCCC

biomass waste from agricultural or agro- industrial	
activities including manure. Project activities	
involving anaerobic digestion and biogas recovery	
from manure shall apply AMS-III.D or AMS-III.R.	
5. This methodology includes construction and	[XXX]
expansion of treatment facilities as well as	
activities that increase capacity utilization at an	
existing facility. For project activities that increase	
capacity utilization at existing facilities, project	
participant(s) shall demonstrate that special efforts	
are made to increase the capacity utilization, that	
the existing facility meets all applicable laws and	
regulations and that the existing facility is not	
included in a separate CDM project activity. The	
special efforts should be identified and described.	
6. This methodology is also applicable for co-	[XXX]
treating wastewater and solid biomass waste, where	
wastewater would otherwise have been treated in	
an anaerobic wastewater treatment system without	
biogas recovery.	
7. The location and characteristics of the disposal	[XXX]
site of the biomass in the baseline condition shall	
be known, in such a way as to allow the estimation	
of its methane emissions. Guidance in paragraphs	
4, 6 and 7 in AMS III.E shall be followed in this	
regard.	
8. The following requirement shall be checked ex-	[XXX]
ante at the beginning of each crediting period in the	
case of composting of solid waste:	
• Establish that identified landfill(s) can be	
expected to accommodate the waste to be	
used for the project activity for the duration	
· · ·	
of the crediting period; or	
• Establish that it is common practice in the	
region to dispose off the waste in solid	
waste disposal site (landfill).	
9. The project participants shall clearly define the	[XXX]
geographical boundary of the region and document	
it in the CDM-PDD. In defining the geographical	
boundary of the region, project participants should	
take the usual distances for transporting the waste	
utilized by the project activity into account, i.e., if	
waste is transported up to 50 km, the region may	
cover a radius of 50 km around the project activity.	
In any case, the region should cover a reasonable	
radius around the project activity that can be	
justified with reference to the project circumstances	

Composting and Co-composting Programme of Activities (PoA) in Indonesia

page 8

CDM – Executive Board

but in no case it shall be more than 200 km. Once defined, the region should not be changed during the crediting period(s).	
10. In the case of stockpiles of wastes baseline emission calculations as described in the "Tool to determine methane emissions avoided from disposal of waste at a solid waste disposal site" shall be adjusted. Stockpiles can be characterised as waste disposal sites that consist of wastes of a homogenous nature with similar origin (e.g., rice husk, empty fruit bunches of oil palm, sawmill waste, etc.). Paragraph 22 in AMS III.E vs.16 provides specific instructions for the calculation of baseline emissions where the baseline is stockpiling of the waste.	[XXX]
11. Where in the baseline usually there is a reduction in the amount of waste through regular open burning or removal for other applications, the use of the "Tool to determine methane emissions avoided from disposal of waste at a solid waste disposal site" shall be adjusted to take account of this burning or removal in order to estimate correctly the baseline emission.	[XXX]
12. The project activity does not recover or combust methane unlike AMS-III.G. Nevertheless, the location and characteristics of the disposal site in the baseline condition shall be known, in such a way as to allow the estimation of its methane emissions.	[XXX]
13 In case residual waste from the biological treatment (slurry, compost or products from those treatments) are handled aerobically and submitted to soil application, the proper conditions and procedures (not resulting in methane emissions) must be ensured.	13. Compost produced by the project activity will be used for agriculture purpose. This ensures no emission of methane.
14. In case residual wastes from the biological treatment (slurry, compost or products from those treatments) are treated thermally/mechanically, the provisions in AMS-III.E related to thermal/mechanical treatment shall be applied.	[XXX]
15. In case residual waste from the biological treatment (slurry, compost or products from those treatments) are stored under anaerobic conditions and/or delivered to a landfill, emissions from the residual waste shall to be taken into account and calculated as per the latest version of the "Tool to determine methane emissions avoided from	[XXX]

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 9

disposal of wasta at a solid wasta disposal site"	
disposal of waste at a solid waste disposal site".	[XXX]
16. For project activities involving controlled	
anaerobic digestion and production of biogas,	
technical measures shall be used (e.g., flared,	
combusted) to ensure that all biogas produced by	
the digester is captured and gainfully used or	
combusted/flared.	
17. The recovered biogas from anaerobic digestion	[XXX]
may also be utilised for the following applications	
instead of flaring or combustion:	
(a) Thermal or electrical energy generation	
directly; or	
(b) Thermal or electrical energy generation	
after bottling of upgraded biogas; or	
(c) Thermal or electrical energy generation	
after upgrading and distribution using one	
of the following options:	
(i) Upgrading and injection of biogas	
into a natural gas distribution grid with	
no significant transmission	
constraints; or	
(ii) Upgrading and transportation of	
biogas via a dedicated piped network	
to a group of end users; or Hydrogen	
production.	
18. If the recovered biogas is used for project	[XXX]
activities covered under paragraph 12 (a), that	
component of the project activity shall use a	
corresponding category under Type I.	
19. If the recovered biogas is used for project	[XXX]
activities covered under paragraph 12 (b) or 12 (c)	
relevant provisions in AMS-III.H related to	
upgrading of biogas, bottling of biogas, injection of	
biogas into a natural gas distribution grid and	
transportation of biogas via a dedicated piped	
network shall be used.	
20. If the recovered biogas is used for project	[XXX]
activities covered under paragraph 12 (d) that	
component of the project activity shall use	
corresponding methodology AMS-III.O.	
21. In case the project activity involves the	[XXX]
replacement of equipment, and the leakage effect	[]
of the use of the replaced equipment in another	
activity is neglected, because the replaced	
equipment is scrapped, an independent monitoring	
of scrapping of replaced equipment needs to be	
implemented. The monitoring should include a	

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 10

check if the number of project activity equipment
distributed by the project and the number of
scrapped equipment correspond with each other.
For this purpose scrapped equipment should be
stored until such correspondence has been checked.
The scrapping of replaced equipment should be
documented and independently verified.

B.3. Assessment and demonstration of additionality of the <u>small-scale CPA</u>, as per eligibility criteria listed in the Registered PoA:

As per attachment A to appendix B to the simplified Modalities & Procedures for small-scale CDM project activities, at least one barrier listed shall be identified due to which the project would not have occurred anyway.

Prior consideration of the CDM:

<u>CPAs with starting date between 22 June 2007 and the commencement of validation of the PoA, listed and sent to the validating DOE and UNFCCC secretariat prior to 31 January 2010 (as per EB report 47):</u>

As per "Guidelines for the Demonstration and Assessment of Prior Consideration of the CDM"3:

- For project activities with a start date before 02 August 2008, for which the start date is prior to the date of publication of the PDD for global stakeholder consultation, are required to demonstrate that the CDM was seriously considered in the decision to implement the project activity.
- For project activities with a starting date on or after 02 August 2008, the project participant must inform a host party DNA and/or the UNFCCC secretariat in writing of the commencement of the project activity and of their intention to seek CDM status. Such notification must be made within six months of the project activity start date.

[any explanation, if required]

In the case of the present project activity, the starting date is set as the [definition starting date].

The complete CDM-related chronological timeline is outlined below:

Table 2 - Schedule of the project implementation

Description	Date

³ EB 49, Annex 22 was the most recent version of this guidance, which could be applied for CPAs falling under this category (only CPAs with project start date up to commencement of the validation of the PoA, 22, December 2009)

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 11

As shown above, the project implementer has [activities that demonstrate prior consideration] The project implementer has always shown its best and continuous effort to secure CDM services, the proposed project activity is in-line with the requirements defined in EB 49 Annex 22 regarding prior consideration of CDM.

CPAs with starting date after commencement of validation of the PoA:

CPAs with start date after the publication of the global stakeholder consultation of the PoA do not have to follow the "Guidelines for the Demonstration and Assessment of Prior Consideration of the CDM" as per EB 60 Annex 26. However the start date shall be clearly defined as per CDM Glossary of Terms.

Pre-tax Project IRR calculation

The proposed CPA would not have occurred without CDM income due the investment barriers, which are in line with section E.5.2 of the Co-Composting PoA DD:

Pursuant to the PoA-DD, the Project IRR calculations will be based on a list of economic parameters provided by the CPA owner that were available at the date of the investment decision. This list of parameters includes:

PROJECT DATA	Unit	Value	References
Investment decision date	DD/MM/YY		
Technical lifetime	Year		
Investment decision date	DD/MM/YY		
Construction start date	Year		
Date project starts operating	Year		
Annual compost			
production	t/year		
FINANCIAL PARAMETERS	Unit	Value	References
Price of compost	IDR/t		
Inflation rate	% per year		
Exchange Rate	IDR/[]		
COSTS AND EQUIPMENT	Unit	Value	References
Total investments	IDR		

Table 3 - Parameters for IRR calculation

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page	12	

Operation & Mainte	enance	
cost	IDR /year	
	% of Capex	
Insurance	p.a.	

Assets in a co-composting facility are considered as shredder, truck, turning machine. According to Indonesian accounting standards such assets are depreciated within 8 years. IRR analysis is performed over the period of the technical lifetime or 10 years, whichever is higher. As a consequence, the book value of any project activity assets at the end of the assessment will be considered as zero⁴. After 8 years, the lifetime of the equipment is accounting wise expected to be over. Hence, the realization of the asset is calculated by the value of the asset material (i.e. mainly steel) and the cost of transportation as it is assumed to not function anymore. Due to the remote locations of palm oil mills, transportation costs are considered as fairly high, equalizing or even exceeding the potential revenues from selling the asset (i.e. steel). If small profits or losses would be generated with the realization of the assets, such would affect the overall IRR on a minimal base as it is added in the last year of the IRR analysis period. Hence, the profit on the realization of the assets can be considered as zero.

[description of key IRR parameters].

Inserting these values yields a pre-tax project **IRR of [XXX]%**.

Benchmark calculation

The benchmark used to compare the return of the project shall be either the "local commercial lending rate", the Weighted Average Cost of Capital. Benchmarks or any other suitable benchmark shall be determined as per the investment decision date. In order to determine the WACC the CAPM can be used to estimate the cost-of-equity.

[description of the benchmark determination and its underlying references].

As per the date of investment the **benchmark has been found as [XXX]%**.

The results of the financial analysis show that [results].

Sensitivity analysis

A sensitivity analysis was undertaken by varying the most sensitive parameters by +/-10%, as summarized in the table below. The results in the table below show that [results sensitivity analysis].

⁴ As per paragraph 4 of Guidance on the Assessment of Investment Analysis (Version 05).

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 13

Table 4 - Sens	itivity ana	lysis	
_	IRR	Variation that hits the benchmark	Likelihood of hitting the benchmark
Total			
investment			
-10%			
O&M			
-10%			
Compost			
price			
increase			
+10%			
Compost			
production			
increase			
+10%			

The analysis shows that [XXX].

B.4. Description of the sources and gases included in the project boundary and proof that the small-scale CPA is located within the geographical boundary of the registered PoA.

As referred to the stipulated project boundary for Type III activities in Appendix B for small-scale project activities, the project activity boundary encompasses the physical, geographical site of the composting plant, as well as the following sites:

- (a) Where the solid waste would have been disposed and the methane emission occurs in the absence of the project activity
- (b) Where the co-composting waste water would have been treated anaerobically in the absence of the project activity;
- (c) Where the treatment of biomass through composting takes place;
- (d) Where the soil application of the produced compost takes place;

And the itineraries between (a), (b), (c) and (d), where the transportation of the waste, wastewater or compost occurs.

The project boundary is graphically summarized in the figure below. The dashed arrows express the GHG-relevant mass flow of the baseline scenario and the drawn-through arrows express the GHGrelevant mass flow of the project activity:

[figure of project boundary]

The gases and sources relevant to the Project are listed below based on the AMS III F version 8 methodology:

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 14

	Source	Gas	Included?	Justification / Explanation
	Biomass	CO ₂	No	CO ₂ emissions from biomass decay in solid waste disposal sites are considered GHG neutral
	disposed in unmanaged	CH ₄	[Yes/No]	[XXX]
Baseline	landfill/dumpsite	N ₂ O	No	Excluded for simplification and conservativeness. Expected to be minimal
Base		CO ₂	No	CO ₂ emissions from anaerobic digestion are considered GHG neutral
	POME treatment	CH ₄	[Yes/No]	[XXX]
	in Open Lagoons	N ₂ O	No	Excluded for simplification and conservativeness. Expected to be minimal
		CO ₂	No	CO ₂ emissions from composting process are considered GHG neutral. Excluded for simplification and conservativeness. Expected to be minimal
	Composting	CH ₄	[Yes/No]	[XXX]
	process	N ₂ O	No	N_2O emissions from loss of N2O-N during composting process and during application of the compost. Excluded for simplification and conservativeness. Expected to be minimal
		CO ₂	No	Excluded for simplification and conservativeness. Expected to be minimal
ity	Run-off water	CH ₄	[Yes/No]	
Project Activity	Kun-off water	N ₂ O	No	Not significant, excluded for simplification. Excluded for simplification and conservativeness. Expected to be minimal
oje	Incremental use	CO ₂	[Yes/No]	[XXX]
Pr	of fossil fuel for transportation	CH ₄	No	Excluded for simplification and conservativeness. Expected to be minimal
	and auxiliary equipments or machineries due to project activity	N ₂ O	No	Excluded for simplification and conservativeness. Expected to be minimal
		CO ₂	[Yes/No]	[XXX]
	Electricity	CH ₄	No	Excluded for simplification and conservativeness. Expected to be minimal
		N ₂ O	No	Excluded for simplification and conservativeness. Expected to be minimal

Table 5 - Summary of Gases and Sources included in project boundary

[CPA name] is located within the boundaries of Republic of Indonesia as specified in A.4.1.2.

B.5. Emission reductions:

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 15

B.5.1. Data and parameters that are available at validation:

Data / Parameter:	Bo _{ww}
Data unit:	tCH ₄ /tCOD
Description:	The methane generation capacity of the wastewater
Source of data used:	AMS-III.F version 8
Value applied:	0.21
Justification of the	Corrected IPCC (2006) default value.
choice of data or	
description of	
measurement methods	
and procedures actually	
applied:	
Any comment:	-

Data / Parameter:	MCF _{ww,treatment}
Data unit:	
Description:	The methane correction factor for the anaerobic decay of untreated wastewater
Source of data used:	AMS-III.F, version 8, Table III.F.1.
Value applied:	[To be determined based on characteristics of the baseline wastewater]
Justification of the	Values for MCF according to table AMS-III.F version 8: Table III.F.1.
choice of data or	
description of	
measurement methods	
and procedures actually	
applied:	
Any comment:	-

Data / Parameter:	φ
Data unit:	-
Description:	Model correction factor to account for model uncertainties
Source of data used:	-
Value applied:	0.9
Justification of the	As per the "Tool to determine methane emissions avoided from dumping waste
choice of data or	at a solid waste disposal site" version 5.1
description of	
measurement methods	
and procedures actually	
applied:	
Any comment:	Oonk et al. (1994) have validated several landfill gas models based on 17
	realized landfill gas projects. The mean relative error of multi-phase models
	was assessed to be 18%. Given the uncertainties associated with the model and
	in order to estimate emission reductions in a conservative manner, a discount of
	10% is applied to the model results.

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 16

Data / Parameter:	OX
Data unit:	-
Description:	Oxidation factor (reflecting the amount of methane from SWDS that is oxidized
	in the soil or other material covering the waste)
Source of data used:	IPCC 2006 Guidelines for National Greenhouse Gas Inventories
	Volume 3 – Chapter 3.2.3
Value applied:	[To be determined of each CPA:
	- Use 0.1 for managed solid waste disposal sites that are covered with oxidizing
	material such as soil or compost.
	- Use 0 for other types of solid waste disposal sites.]
Justification of the	Managed or uncategorized SWDS
choice of data or	
description of	
measurement methods	
and procedures actually	
applied:	
Any comment:	As per the "Tool to determine methane emissions avoided from dumping waste
	at a solid waste disposal site" version 5.1

Data / Parameter:	F
Data unit:	-
Description:	Fraction of methane in the SWDS gas (volume fraction)
Source of data used:	IPCC 2006 Guidelines for National Greenhouse Gas Inventories
	Volume 3 – Chapter 3.2.3
Value applied:	0.5
Justification of the	As per the "Tool to determine methane emissions avoided from dumping waste
choice of data or	at a solid waste disposal site" version 5.1
description of	
measurement methods	
and procedures actually	
applied:	
Any comment:	This factor reflects the fact that some degradable organic carbon does not
	degrade, or degrades very slowly, under anaerobic conditions in the SWDS.
	A default value of 0.5 is recommended by the IPCC.

Data / Parameter:	DOC _f
Data unit:	-
Description:	Fraction of degradable organic carbon (DOC) that can decompose
Source of data used:	IPCC 2006 Guidelines for National Greenhouse Gas Inventories
	Volume 3 – Chapter 3.2.3
Value applied:	0.5
Justification of the	As per the "Tool to determine methane emissions avoided from dumping waste
choice of data or	at a solid waste disposal site" version 5.1
description of	
measurement methods	
and procedures actually	

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 17

applied:	
Any comment:	-

MCF
-
Methane correction factor
IPCC 2006 Guidelines for National Greenhouse Gas Inventories
Volume 3 – Table 3.1
Use the following values for MCF:
• 1.0 for anaerobic managed solid waste disposal sites. These must have
controlled placement of waste (i.e., waste directed to specific deposition areas, a
degree of control of scavenging and a degree of control of fires) and will
include at least one of the following: (i) cover material; (ii) mechanical
compacting; or (iii) leveling of the waste;
• 0.5 for semi-aerobic managed solid waste disposal sites. These must have
controlled placement of waste and will include all of the following structures
for introducing air to waste layer: (i) permeable cover material; (ii) leachate
drainage system; (iii) regulating pondage; and (iv) gas ventilation system;
• 0.8 for unmanaged solid waste disposal sites – deep and/or with high
water table. This comprises all SWDS not meeting the criteria of managed
SWDS and which have depths of greater than or equal to 5 meters and/or high
water table at near ground level. Latter situation corresponds to filling inland water, such as pond, river or wetland, by waste;
• 0.4 for unmanaged-shallow solid waste disposal sites. This comprises all
SWDS not meeting the criteria of managed SWDS and which have depths of
less than 5 metres.
icss than 5 metres.
The methane correction factor (MCF) accounts for the fact that unmanaged
SWDS produce less methane from a given amount of waste than managed
SWDS, because a larger fraction of waste decomposes aerobically in the top
layers of unmanaged SWDS.

Data / Parameter:	DOCi
Data unit:	-
Description:	Fraction of degradable organic carbon (by weight) in the waste type j
Source of data used:	IPCC 2006 Guidelines for National Greenhouse Gas Inventories
	Volume 5 – Tables 2.4 and 2.5
Value applied:	20 %
Justification of the	The figure represents the percentage of wet waste.
choice of data or	Processed EFB falls under the category of 'garden, yard and park waste'.
description of	As per the "Tool to determine methane emissions avoided from disposal of
measurement methods	waste at a solid waste disposal site" version 5.1
and procedures actually	
applied:	
Any comment:	See Annex 3 – Baseline Information

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 18

Data / Parameter:	GWP _{CH4}
Data unit:	tCO ₂ e/tCH ₄
Description:	Global warming potential (GWP) of methane, valid for the relevant commitment period
Source of data used:	Decisions under UNFCCC and the Kyoto Protocol (a value of 21 is to be applied for the first commitment period of the Kyoto Protocol)
Value applied:	21
Justification of the	As required by IPCC.
choice of data or	
description of	
measurement methods	
and procedures actually	
applied:	
Any comment:	-

Data / Parameter:	k _j						
Data unit:	-						
Description:	Decay rate for the waste type j						
Source of data used:	IPCC	2006 Guidel	ines for N	ational G	reenhouse	e Gas Inv	ventories
	Volu	me 5 – Tables	3.3				
Value applied:	0.17						
Justification of the	As pe	er the "Tool to	o determi	ne metha	ne emissio	ons avoid	led from dumping waste
choice of data or	at a s	solid waste d	isposal si	te" versi	on 5.1, El	FB chara	acteristics are similar to
description of	garde	en waste. Hen	ce corresp	ondent v	alues for	garden w	aste shall be used. Palm
measurement methods							oil plantations are grown
and procedures actually					20°C and	MAP >	1000 mm ⁵ . Indonesia is
applied:	situat	ed within the	tropical l	belt.			
			Boreal and	Temperate			1
			(MAT≤	20°Č)	Tropical (MA	,	
	Waste	e type j	Dry (MAP/PET	Wet (MAP/PET	Dry (MAP<	Wet (MAP>	
			<1)	>1)	1000mm)	1000mm)	
		Pulp, paper, cardboard (other	0.04	0.00	0.045	0.07	
	00	than sludge), textiles	0.04	0.06	0.045	0.07	
	vly adin	Wood, wood					
	Slowly degrading	products and straw	0.02	0.03	0.025	0.035	
		Other (non-food)					
	ding	organic putrescible	0.05	0.10	0.065	0.17	
	Moderately degrading	garden and park	0.000		01000	0117	
		waste Food, food waste,					
	ling V	sewage sludge,	0.07	0.105	0.005	0.40	
	Rapidly degrading	beverages and tobacco	0.06	0.185	0.085	0.40	
	R de						

⁵ Indonesia faces climatic conditions with all-year-round temperatures ranging 25 °C to 32 °C and evenly distributed rainfall of 2000 mm: Basiron Yusof, "Palm oil production through sustainable plantations" (2007), European Journal of Lipid Science Technology, 109:289

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

_

page 19

Any comment:

Data / Parameter:	EF _{fuel}
Data unit:	t.CO ₂ /t.fuel
Description:	CO ₂ emission factor from diesel use
Source of data used:	IPCC 2006 value.
Value applied:	3.185
Justification of the	Calculated by multiplying the following two values:
choice of data or	i) Emission factor for Gas/Diesel oil: 74.10 tCO2/TJ
description of	(Source: IPCC 2006, vol2, 2006 - Table 2.2 page 2.16cited at: http://www.ipcc-
measurement methods	nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combus
and procedures actually	tion.pdf)
applied:	ii) NCV for Gas/Diesel oil: 43.33 TJ/10 ³ tonnes (Source: Revised 1996 IPCC
	Guidelines for National Greenhouse Gas Inventories: Workbook cited at
	http://www.ipcc-nggip.iges.or.jp/public/gl/guidelin/ch1wb1.pdf)
Any comment:	-

Data / Parameter:	EF _{CO2}
Data unit:	t.CO ₂ /km
Description:	CO ₂ emission factor from diesel fuel use due to transportation
Source of data used:	Calculated based on the following inputs:
	i) Vehicle Fuel Consumption (volume): 0.175 litres/km
	ii) Fuel Density: 0.85 kg/litre
	iii) CO_2 emission factor from fuel use due to transportation: 3.185 t. CO_2 / t.fuel
	EF _{CO2} can be calculated as:
	(0.175 * 0.85) * 3.185 / 1000 = 0.00047
Value applied:	0.00047
Justification of the	i) Vehicle Fuel Consumption (volume): 17.5 litres for 100km used. Source:
choice of data or	www.ipcc-nggip.iges.or.jp/public/gp/bgp/2_3_Road_Transport.pdf (table 1-31
description of	page 70)
measurement methods	ii) Fuel Density: 0.8425 kg/litre. Source: Pertamina National Oil Company
and procedures actually	http://www.pertamina.com
applied:	/index.php?option=com_content&task=view&id=3194&Itemid=667
	iii) CO2 emission factor from fuel use due to transportation: IPCC 2006, vol2,
	2006 - Table 2.2 page 2.16
Any comment:	-

Data / Parameter:	$\eta_{machine,skidloader}$	
Data unit:	t.fuel / hour	
Description:	Composting machine efficiency, loader / skidloader (diesel fuel consumption	
	rate per hour)	
Source of data used:	Values to be used (unit converted into tonnes using fuel density = 0.8425):	
	1. Fuel consumption as defined by manufacturer; or	
	2. 13.6 liter/hour, defined as maximum fuel consumption of loader / skidloader	
	in composting facilities.	
	$\eta_{machine,skidloader}$ can be calculated as:	

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 20

	$13.6 \ge 0.8425 / 1000 = 0.01146$
Value applied:	
Justification of the	i) Highest value for loader / skidloader diesel fuel consumption rate (e.g. model
choice of data or	GEHL 5240E = 13.6 litres / hour)
description of	Source : www.mwesales.com/Gehl-Specs/3640-4240-4640-5240.pdf
measurement methods	ii) Fuel Density: 0.8425 kg/litre. Source: Pertamina National Oil Company
and procedures actually	http://www.pertamina.com
applied:	/index.php?option=com_content&task=view&id=3194&Itemid=667
Any comment:	-

Data / Parameter:	$\eta_{machine,turning}$		
Data unit:	t.fuel / hour		
Description:	Composting machine efficiency, turning machine (diesel fuel consumption rate per hour)		
Source of data used:	Values to be used (u	init converted into tonnes usir	ng fuel density = 0.8425):
	1. Fuel consumption	as defined by manufacturer;	or
	2. Values from below	v table for different size of tur	rning machine :
	Turning machine	Fuel consumption, highest	Remarks
	Small size	13 liter/hour	Compost width <=4 meter
	Medium size	25 liter/hour	Compost width <4-5 meter
	Large size	37 liter/hour	Compost width <5-6 meter
	Very large size 45 liter/hour Compost width >6 met		
	$\eta_{machine,turning}$ can be calculated as: 37 x 0.8425 / 1000 = 0.03117 (large size)		
Value applied:	[]		
Justification of the	i) Typical model Bac	khus 17.50 turning machine	fuel consumption (volume):
choice of data or	37 litres / hour		
description of			
measurement methods	/Materials%20Handling%20Equipment%20Guide.pdf		
and procedures actually	ii) Fuel Density: 0.8425 kg/litre. Source: Pertamina National Oil Company		
applied:	http://www.pertamina.com		
	/index.php?option=com_content&task=view&id=3194&Itemid=667		
Any comment:	-		

Data / Parameter:	CEF _{gen,y}		
Data unit:	tCO2e/MWh		
Description:	Carbon emissions factor of electricity supplied to the project by the palm oil mill in year 'y'		
Source of data used:	 Higher of the following four sources: 1. Technical specifications on fossil fuel use per energy produced multiplied by IPCC 2006 default emission factor 2. Default IPCC 2006 default emission factor on diesel fuelled stationary combustion applying a conservative generator efficiency of 30% (IPCC chapter 2, page 2.16 ff.) 3. Emission factor listed in Table I.D.1 of the methodology AMS I.D 		

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 21

Value applied:
Justification of the
choice of data or
description of
measurement methods
and procedures actually
applied:
Any comment:

Data / Parameter:	EF _{composting}
Data unit:	g.CH ₄ /kg.waste
Description:	Emission factor for composting of organic waste
Source of data used:	IPCC default values
Value applied:	4 kg.CH ₄ /tonne wet waste
Justification of the	The figure was based on wet waste, as per methodology
choice of data or	
description of	
measurement methods	
and procedures actually	
applied:	
Any comment:	-

Data / Parameter:	UF _{b,baseline}
Data unit:	-
Description:	Model correction factor to account for model uncertainties of co-composted
	wastewater
Source of data used:	AMS III.F version 8, reference: FCCC/SBSTA/2003/10/Add.2, page 25
Value applied:	0.94
Justification of the	As per methodology
choice of data or	1 05
description of	
measurement methods	
and procedures actually	
applied:	
Any comment:	-

Data / Parameter:	UF _{b,project}
Data unit:	-
Description:	Model correction factor to account for model uncertainties of runoff water
Source of data used:	AMS III.F version 8, reference: FCCC/SBSTA/2003/10/Add.2, page 25
Value applied:	1.06
Justification of the	As per methodology
choice of data or	1 05
description of	
measurement methods	
and procedures actually	

Composting and Co-composting Programme of Activities (PoA) in Indonesia

page 22

CDM – Executive Board

applied:	
Any comment:	-

B.5.2. Ex-ante calculation of emission reductions:

The total emissions reduction of the CPA is calculated on the basis of the equations and parameters presented and explained in the section E.6.1 of the PoA DD and B.5.1 of this document.

Baseline Emissions

The baseline emissions are [baseline emissions]

Baseline emissions shall exclude methane emissions that would have to be captured, fuelled or flared to comply with national or local safety requirement or legal regulations.

 $BE_{y} = BE_{CH4,SWDS,y} - (MD_{y,reg} * GWP_{CH4}) + (MEP_{y,ww} * GWP_{CH4}) + BE_{CH4,manure,y}$

Where:

BE _{CH4,SWDS,y}	Yearly methane generation potential of the solid waste composted by the project during
	the years "x" from the beginning of the project activity $(x=1)$ up to the year 'y'
	estimated as described in AMS III.G (t CO2e)
MD _{y,reg}	Amount of methane that would have to be captured and combusted in the year 'y' to
	comply with the prevailing regulations
MEP _{y,ww}	Methane emission potential in the year 'y' of the wastewater. The value of this term is
	zero if co-composting of wastewater is not included in the project activity
BE _{CH4,manure,y}	Where applicable, baseline emissions from manure composted by the project activities,
	as per the procedures of AMS-III.D. The value of this term is zero, since the project
	does not include treatment of manure.
GWP _{CH4}	GWP for CH ₄ (value of 21 is used)

The above baseline emissions will be calculated as follows:

(a) The estimation of the methane emission potential of a solid waste disposal site ($BE_{CH4,SWDS,y}$, in tCO₂e) shall be undertaken using the "Tool to determine methane emissions avoided from dumping waste at a solid waste disposal site" version 5.1.

$$BE_{CH4,SWDS,y} = \varphi \cdot (1-f) \cdot GWP_{CH4} \cdot (1-OX) \cdot \frac{16}{12} \cdot F \cdot DOC_f \cdot MCF \cdot \sum_{x=1}^{y} \sum_{j} W_{j,x} \cdot DOC_j \cdot e^{-k_j(y-x)} \cdot \left(1-e^{-k_j}\right)$$

where:

- BE_{CH4,SWDS,y}
 Methane emissions avoided during the year *y* from preventing waste disposal at the solid waste disposal site (SWDS) during the period from the start of the project activity to the end of the year y (tCO2e)
 φ
 Model correction factor to account for model uncertainties (0.9)
- f Fraction of methane captured at the SWDS and flared, combusted or used in

Composting and Co-composting Programme of Activities (PoA) in Indonesia

UNFCCC

page 23

CDM – Executive Board

	another manner
GWP _{CH4}	Global warming potential (GWP) of methane, valid for the relevant commitment period (21)
OX	Oxidation factor (reflecting the amount of methane from SWDS that is oxidized in the soil or other material covering the waste) [xx]:
F	Fraction of methane in the SWDS gas (volume fraction) (0.5)
DOC _f	Fraction of degradable organic carbon (DOC) that can decompose (0.5)
MCF	Methane correction factor [xx]:
$W_{j,x}$	Amount of organic waste type j prevented from disposal in the SWDS in the year x (tons)
DOCi	Fraction of degradable organic carbon (by weight) in the waste type <i>j</i> (20%)
k _j	Decay rate for the waste type i (0.17)
j	Waste type category (index)
X	Year during the crediting period: x runs from the first year of the first crediting period $(x = 1)$ to the year y for which avoided emissions are calculated $(x = y)$
у	Year for which methane emissions are calculated

The following table shows the amount of organic waste composted from the palm-oil mill operation that would have been [baseline treatment of waste]:

Waste type	Amount composted per year	Proportion of total
Wood and wood products		
Pulp, paper and cardboard (other than sludge)		
Food, food waste, beverages and tobacco (other than sludge)		
Textiles		
Garden, yard and park waste		
Glass, plastic, metal, other inert waste		
TOTAL		

Baseline Emissions for EFB

Year	EFB	BE _{CH4,SWDS} (tCO ₂ e)
	(tonnes)	$(\mathfrak{lCO}_2\mathfrak{e})$
1		
2		
3		
4		
5		
6		
7		

Methane emission potential of co-composted wastewater is estimated as follows:

MEP_{y,ww} = Q_{y,ww,in} * COD_{y,ww,untreated} * B_{o,ww} * MCF_{ww,treatment} * UF_{b,wastewater}

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 24

Where:

Q _{y,ww,in}	Volume of wastewater entering the co-composting facility in the year "y" (m ³)
COD _{y,ww,untreated}	Chemical oxygen demand of the wastewater entering the co-composting facility in the
	year "y" (tonnes/m ³)
$B_{o,ww}$	Methane producing capacity for the wastewater (IPCC default value of 0.21 kg CH_4 /
	kg COD)
MCF _{ww,treatment}	Methane correction factor for the wastewater treatment system in the baseline scenario
-	(MCF value as per table III.F.1)
UF _{b,wastewater}	Model correction factor to account for model uncertainties of co-composted wastewater
,	(0.94)

Baseline Emissions for POME

YEAR	Qww (m3/year)	COD _{ww} (kg COD/m ³)	B _{O,ww} (default value)	MCF _{ww,treatment}	GWP _{CH4}	UF _b (default value)	BE _{CH4,WW} (tCO ₂ e)
1							
2							
3							
4							
5							
6							
7							

(c) There are no regulations in Indonesia requiring the capture and utilisation or destruction of methane from EFB disposal sites. There are no regulations in Indonesia that prohibits the EFB disposal in unmanaged solid waste disposal site/landfilling. In addition, there is no regulation to require the recovery of methane from anaerobic lagoons treating POME.

Project Activity Emissions

Project activity emissions consist of:

- (a) CO₂ emissions due to incremental transport distances;
- (b) CO2 emissions from electricity and/or fossil fuel consumption by the project activity facilities;
- (c) In case of anaerobic digestion: methane emissions from physical leakages of the anaerobic digester;
- (d) In case of composting: methane emissions during composting process;
- (e) In case of composting (including co-composting of wastewater): methane emissions from runoff water;
- (f) In case the residual waste from the biological treatment (slurry, compost or products from those treatments) are stored under anaerobic conditions and/or delivered to a landfill: the methane emissions from the disposal/storage of these residual waste/products.

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 25

 $PE = PE_{y,transp} + PE_{y,power} + PE_{y,phy \ leakage} + PE_{y,comp} + PE_{y,runoff} + PE_{y,res \ waste}$

Where:

PE_y	Project activity emissions in the year
PE _{y,transp}	Emissions from incremental transportation in the year y (tCO_2e)
PE _{y,power}	Emissions from electricity or fossil fuel consumption in the year y (tCO ₂ e)
$PE_{y, phy leakage}$	In case of anaerobic digestion: methane emissions from physical leakages of the anaerobic digester in the year y (tCO_2e)
$PE_{y,comp}$	In case of composting: methane emissions during composting process in the year y (tCO_2e)
$PE_{y,runoff}$	In case of composting (including co-composting of wastewater): methane emissions from runoff water in the year y (tCO_2e)
PE _{y,res} waste	In case the residual waste/slurry/products are subjected to anaerobic storage or disposed in a landfill: methane emissions from the anaerobic decay of the residual waste/products (tCO_2e)

(a) CO₂ emissions due to incremental transport distances between:

(i) The collection points of biomass and the composting site as compared to the baseline solid waste disposal site,

(ii) The collection points of wastewater and composting site as compared to the baseline wastewater treatment site,

(iii) The composting site and the soil application sites.

 $PE_{y,transp} = (Q_y/CT_y) * DAF_w * EF_{CO2} + (Q_{y,comp}/CT_{y,comp}) * DAF_{comp} * EF_{CO2}$

Where:

Qy	Quantity of waste composted and/or wastewater in the year "y" (t)
CT_y	Average truck capacity for waste transportation (t/truck)
DAF_w	Average incremental distance for waste transportation (km/truck)
EF _{CO2}	CO ₂ emission factor from fuel use due to transportation (t.CO ₂ /km, IPCC default values
	or local values can be used) (0.00047)
Q _{y,comp}	Quantity of final compost product produced in the year "y" (t)
CT _{y, comp}	Average truck capacity for final compost product transportation (t/truck)
DAF _{comp}	Average distance for final compost product transportation (km/truck)

 $DAF_w = 0$; as the composting facilities are within the boundaries of the composting mills, therefore project emissions due to transportation of EFB to the composting sites is considered as '0'. Therefore the average truck capacity for EFB transportation CT_v is not needed to be monitored.

Hence:

 $PE_{y,transp} = (Q_{y,comp} / CT_{y,comp}) * DAF_{comp} * EF_{CO2}$

Project Emissions from transportation

Composting and Co-composting Programme of Activities (PoA) in Indonesia

page 26

CDM – Executive Board

YEAR	Q _{y,comp} (tonnes)	CT _{y,comp} (tonnes/truck)	DAF _{comp} (km/truck)	EF _{CO2} (tCO ₂ e/km)	PE _{y,trans} (tCO ₂ e)
1	(*******	(*******	()		
2					
3					
4					
5					
6					
7					

(b) CO_2 emissions on account of fossil fuel based energy used by the project activity facilities, which includes energy used for [use of power at CPA site].

 $PE_{y,power} = PE_{gen,y} + \sum PE_{fuel,i,y}$

 $PE_{gen,y} = P_{gen,y} \times OT_{gen_comp,y} \times 110\% \times CEF_{gen,y}$

 $PE_{fuel,i,y} = OT_{machine,i,y} \ x \ \eta_{machine,i} \ x \ EF_{fuel}$

Where:

PE _{y,power}	Project emissions from electricity and/or fossil fuel consumption by the project
PE _{gen,y}	activity facilities (t.CO ₂ /year) Project emissions from electricity consumption by the project activity facilities (t.CO ₂ /year)
$PE_{fuel,y}$	Project emissions from fossil fuel consumption by the project activity facilities $(t.CO_2/year)$
$\begin{array}{c} P_{gen,y} \\ OT_{gen_comp,y} \end{array}$	Total capacity of auxiliary equipment installed in the project activity (MW). Operating hours of composting plant when biomass power plant is out of operation (hour/year).
CEF _{gen,y}	Carbon emissions factor of electricity supplied to the project by the palm-oil mill in year 'y' (t. CO_2e/MWh).
$PE_{fuel,i,y}$	Project emissions from fossil fuel consumption by the project activity facilities $(t.CO_2/year)$
$OT_{machine,i,y}$	Operating hours of hours of composting machine type 'i' in year 'y' (hour/year) (see values below)
$\mathrm{EF}_{\mathrm{fuel}}$	Emissions factor for the diesel fuel used (t.CO2e/t.fuel) (IPCC 2006)
$\eta_{machine,i}$	Efficiency factor of composting machine type 'i', (t.fuel / hour) (see values below)
i	type of composting machines with diesel fuel consumption (loader / skidloader or turning machine)

CEF_{gen,y} is determined using the highest applicable value of the following four sources:

- 1. Technical specifications on fossil fuel use per energy produced multiplied by IPCC 2006 default emission factor
- 2. Default IPCC 2006 default emission factor on diesel fuelled stationary combustion applying a conservative generator efficiency of 30% (IPCC chapter 2, page 2.16 ff.)

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 27

- 3. Emission factor listed in Table I.D.1 of the methodology AMS I.D
- 4. Grid emissions factor relevant to the palm oil mill operation (if grid connection is available)

In case of renewable energy sources, $CEF_{gen,y}$ is set zero.

Default values listed, section B.5.1, can be used for the composting machine efficiency or can be taken from machine specification datasheet. There are two types of composting machine, the loader / skidloader and the turning machine, with each diesel fuel consumption rate per hour as follows:

OT _{machine,loader,y}	Operating hours of composting machine, loader, in year 'y' (hour/year)
OT _{machine,turning,y}	Operating hours of composting machine, turning, in year 'y' (hour/year)
$\eta_{\text{machine},\text{skidloader}}$	Efficiency factor of the loader / skidloader machine (t.fuel / hour)
$\eta_{\text{machine,turning}}$	Efficiency factor of the turning machine used (t.fuel / hour)

Project Emissions from electricity consumption

YEAR	P _{gen,y} (MW)	OT _{gen,comp.,y} (hours)	CEF _{gen,v} (t CO ₂ /MWh)	$\frac{\text{PE}_{\text{gen},\text{v}}}{(\text{t.CO}_2\text{e})}$
1				
2				
3				
4				
5				
6				
7				

Project Emissions from fossil fuel consumption, skidloader

YEAR	OT _{machine,skidloader,v} (hours)	$\eta_{\text{machine,skidloader}}$ (t.fuel / hours)	EF _{fuel} (t.CO ₂ e/t.fuel)	$\begin{array}{c} PE_{fuel,skidloader,v}\\ (t.CO_2e) \end{array}$
1				
2				
3				
4				
5				
6				
7				

Project Emissions from fossil fuel consumption, turning machine

YEAR	OT _{machine,turning,v} (hours)	$\eta_{machine,turning}$ (t.fuel / hours)	EF _{fuel} (t.CO ₂ e/t.fuel)	$\frac{\text{PE}_{\text{fuel},\text{turning},v}}{(t.\text{CO}_2\text{e})}$
1				
2				
3				

Composting and Co-composting Programme of Activities (PoA) in Indonesia

page 28

CDM – Executive Board

4		
5		
6		
7		

(c) CH₄ emissions from physical leakages of the anaerobic digester.

 $PE_{y,phy \ leakage} = Q_y * EF_{anaerobic} * GWP_{CH4}$

Where:

EF_{anaerobic} Emission factor for anaerobic digestion of organic waste (t CH₄/ton waste treated) Emission factor can be based on facility/site-specific measurements, country specific values (table 4.1, chapter 4, Volume 5, 2006 IPCC Guidelines for National Greenhouse Gases Inventories). IPCC default values are 2 g CH₄/kg waste treated on a dry weight basis and 1 g CH₄/kg waste treated on a wet weight basis

Methane emission from physical leakages in the project emission is negligible, since the project activity is composting.

Hence this project emission calculation is zero.

(d) CH₄ emissions during composting.

 $PE_{y,comp} = Q_y * EF_{composting} * GWP_{CH4}$

Where:

```
EF<sub>composting</sub> Emission factor for composting of organic waste (t CH<sub>4</sub>/ton waste treated)
Emission factor can be based on facility/site-specific measurements, country specific values (table 4.1, chapter 4, Volume 5, 2006 IPCC Guidelines for National Greenhouse Gases Inventories). IPCC default values are 10 g CH<sub>4</sub>/kg waste treated on a dry weight basis and 4 g CH<sub>4</sub>/kg waste treated on a wet weight basis. In this case, the waste treated (EFB) is categorized as wet weight basis<sup>6</sup>.
```

In case oxygen content of the composting process is monitored and above 8%, value of $EF_{composting}$ can be set to zero. This will be done via sampling with maximum margin of error of 10% at a 95% confidence level. For this purpose a portable oxygen meter can be used with lancets of at least 1 m length.

Hence this project emission calculation is [XXX].

(e) CH₄ emissions from run-off water from the composting facilities.

⁶ Astimar Abdul Aziz, Mohamad Deraman, Ropandi Mamat, Anis Mokhtar, Wan Hasamudin Wan Hasan, Ridzuan Ramli and Ismail; High Porosity Carbon Powder from Oil Palm Empty Fruit Bunches for Adsorbent Products, Jurnal MPOB TT No. 332

Composting and Co-composting Programme of Activities (PoA) in Indonesia

UNFCCC

CDM – Executive Board

page 29

[treatment of run-off water] Project emissions from runoff water will take into account [XXX]

 $PE_{y,runoff} = Q_{y,ww,runoff} * COD_{y,ww,runoff} * B_{o,ww} * MCF_{ww,treatment} * UF_{b,project} * GWP_{CH4}$

Where:

Qy,ww,runoff	Volume of run-off water in the year "y" (m ³)
CODy,ww,runoff	Chemical oxygen demand of the runoff water leaving the composting facility in the year "y" (t/m^3)
Bo,ww	Methane producing capacity of the wastewater (IPCC default value for domestic wastewater of 0.21 kg CH ₄ /kg. COD)
MCFww, treatment	Methane correction factor for the wastewater treatment system where the runoff water is treated (MCF value as per table III.F.1)
GWP _{CH4}	Global Warming Potential (GWP) of methane, valid for the relevant commitment period (21)
UF _{b,project}	Model correction factor to account for model uncertainties (1.06)

Project Emissions from runoff water

YEAR	Q _{v,runoff} (m ³ /year)	COD _{v,runoff} (kg COD/m ³)	B _{O,ww} (default)	MCF _{ww,treatment}	GWP _{CH4}	UF _{b,project}	PE _{v,runoff} (tCO ₂ e)
1						· · · · ·	, , ,
2							
3							
4							
5							
6							
7							

(f) CH₄ emissions from anaerobic storage and/or disposal in a landfill of the compost

Methane emission from anaerobic storage and/or disposal in a landfill of the compost is [XXX].

Hence this project emission calculation is [XXX].

Hence: [equation for project emissions]

Leakage

Project leakage is [XXX]. Therefore, Leakage_y = [XXX].

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 30

B.5.3. Summary of the ex-ante estimation of emission reductions:

Table 8 - Summary of the ex-ante estimation of emission reductions

Years	Estimation of baseline emissions (tonnes of CO ₂ e)	Estimation of project activity emissions (tonnes of CO ₂ e)	Estimation of leakage (tonnes of CO ₂ e)	Estimation of emission reductions (tonnes of CO ₂ e)
1				
2				
3				
4				
5				
6				
7				
Total (tonnes of CO ₂)				
	Total number of c	rediting years		
Annual avera	age over the crediting (tonnes of (reductions	

B.6.1. Description of the monitoring plan:

The monitoring plan details the actions necessary to record all the data parameters required by the methodology AMS III.F, version 8, as detailed in section E.7.1 of the PoA-DD. Details of the monitoring procedures and frequency of monitoring are described for each parameter in this section. All data will be recorded at the specified frequency.

The operator of the CPA will be responsible for collecting the monitoring data and will provide the coordinating entity with full data records and if applicable calibration certificates. The data will be archived electronically, backed up regularly, and be stored by the coordinating entity for 2 years after the end of the crediting period of each CPA or the last issuance of CERs of this project, whichever occurs last.

The installation of the monitoring equipment is detailed below for each parameter. The CPA operator will implement QA&QC measures to calibrate and guarantee the accuracy of metering and safety of the project operation. The metering devices will be calibrated and inspected properly and periodically as per standard industry norms and requirements.

Procedures to discount conservatively the emission reductions from the projects will be defined, in the event either the project owner or the coordinating entity detects any distortion or mal-function of the monitoring equipment. The readings from monitoring equipment will be readily accessible for the Designated Operational Entity (DOE) carrying out the verification of monitoring data.

The CPA operator has an operational and management structure in place to monitor emission reductions from the project activity. Specific personnel will be assigned to be responsible for project management as well as for all the different parameters to be monitored and reported.

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 31

The parameters to be monitored are:

Q _y
t/year
Total amount of organic waste prevented from disposal in year 'x'
Project owner
[XXX]
EFB weighing by calibrated weighbridge.
Recording frequency: each time a truck passes the weighbridge.
The data will be measured and recorded daily in a log sheet and aggregated
monthly for calculations
Calibration and maintenance are subject to procedures established by instrument
manufacturer.
The weighbridge will be calibrated annually.
Data monitored and required for verification and issuance will be kept for a
minimum of two years after the end of the crediting period or the last issuance of
CERs for this programme activity, whichever occurs later.

Data / Parameter:	Q _{y,ww,in}
Data unit:	m ³ /year
Description:	Flow rate of organic wastewater into the composting facility
Source of data to be	Host facility: flow meter
used:	
Value of data	[XXX]
Description of	Measurement will be taken from an installed flowmeter that will be placed at the
measurement methods	inlet of pond where POME will be pumped to the composting site.
and procedures to be	Data will be recorded daily in a log sheet and aggregated monthly.
applied:	
QA/QC procedures to	Calibration and maintenance are subject to procedures established by instrument
be applied:	manufacturer.
	The flowmeter will be calibrated annually.
Any comment:	Data monitored and required for verification and issuance will be kept for a
	minimum of two years after the end of the crediting period or the last issuance of
	CERs for this programme activity, whichever occurs later.

Data / Parameter:	COD _{y,ww,untreated}
Data unit:	kg/m ³
Description:	Concentration of organic material in wastewater into the composting facility
Source of data to be	Project owner through COD sampling
used:	
Value of data	[XXX]
Description of	COD sampling will be conducted at the inlet to composting site.
measurement methods	COD samples will be taken monthly and sent for testing at an independent third
and procedures to be	party laboratory.
applied:	

Composting and Co-composting Programme of Activities (PoA) in Indonesia

page 32

CDM – Executive Board

QA/QC procedures to be applied:	Test equipment will be calibrated according to manufacturer's recommendations.
Any comment:	Data monitored and required for verification and issuance will be kept for a minimum of two years after the end of the crediting period or the last issuance of CERs for this programme activity, whichever occurs later. COD values of the wastewater in a mill won't vary over the year as palm oil production process doesn't change. Hence, one COD test a month by an independent third party laboratory is considered as representative and further in line with the government regulation of effluent COD measurement frequency

Data / Parameter:	Qy,ww,runoff
Data unit:	m^3
Description:	Volume of run-off water from the co-composting plant
Source of data to be	Project developer
used:	
Value of data:	[XXX]
Description of	Measurement will be taken from an installed flowmeter that will be placed at the
measurement methods	inlet point to the environmental pond.
and procedures to be	Data will be recorded daily in a log sheet and aggregated monthly.
applied:	
QA/QC procedures to	Calibration and maintenance are subject to procedures established by instrument
be applied:	manufacturer.
	The flowmeter will be calibrated annually.
Any comment:	Data monitored and required for verification and issuance will be kept for a
	minimum of two years after the end of the crediting period or the last issuance of
	CERs for this programme activity, whichever occurs later.

Data / Parameter:	COD _y ,ww,runoff
Data unit:	kg/m^3
Description:	Concentration of organic material in runoff water from the composting facility
Source of data to be	Project owner through COD sampling
used:	
Value of data:	[XXX]
Description of	Measurement will be taken from the pond where the runoff water is discharged.
measurement methods	One COD sample will be taken monthly and sent for testing at an independent
and procedures to be	third party laboratory.
applied:	
QA/QC procedures to	Test equipment will be calibrated according to manufacturer's recommendations.
be applied:	
Any comment:	Data monitored and required for verification and issuance will be kept for a
	minimum of two years after the end of the crediting period or the last issuance of
	CERs for this programme activity, whichever occurs later.
	COD values of the wastewater in a mill won't vary over the year as palm oil
	production process doesn't change. Hence, one COD test a month by an
	independent third party laboratory is considered as representative and further in
	line with the government regulation of effluent COD measurement frequency.

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 33

Data / Parameter:	Q _{v,comp}
Data unit:	t/year
Description:	Quantity of final compost produced in year 'y'
Source of data to be	Project owner
used:	
Value of data	[XXX]
Description of	The produced compost weighing by calibrated weighbridge.
measurement methods	Recording frequency: each time a truck passes the weighbridge.
and procedures to be	The data will be measured and recorded daily in a log sheet but aggregated
applied:	monthly for calculations
QA/QC procedures to	Calibration and maintenance are subject to procedures established by instrument
be applied:	manufacturer.
	The weighbridge will be calibrated annually.
Any comment:	Data monitored and required for verification and issuance will be kept for a
	minimum of two years after the end of the crediting period or the last issuance of
	CERs for this programme activity, whichever occurs later.

Data / Parameter:	Pgen,y
Data unit:	MW
Description:	Total capacity of auxiliary equipment installed in the project activity
Source of data to be	Project owner
used:	
Value of data applied	[XXX]
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	-
measurement methods	
and procedures to be	
applied:	
QA/QC procedures to	-
be applied:	
Any comment:	-

Data / Parameter:	OT _{gen comp,y}
Data unit:	hour/year
Description:	Operating hours of composting plant when biomass power plant is out of operation
Source of data to be	Project owner
used:	
Value of data applied	[XXX]
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	Data can be obtained from the palm oil mills and composting facilities logbooks.

Composting and Co-composting Programme of Activities (PoA) in Indonesia

UNFCCC

page 34

CDM – Executive Board

measurement methods and procedures to be applied:	Any time when composting plant is operating during failure of biomass power plant shall be monitored.
QA/QC procedures to	Each failure or maintenance shut down of either the biomass power plant of
be applied:	composting facility is recorded in company's logbooks.
Any comment:	-

Data / Parameter:	OT _{machine,skidloader,y}
Data unit:	hour/year
Description:	Annual operating hours of loader / skidloader machine
Source of data to be used:	Project owner
Value of data applied for the purpose of calculating expected emission reductions in section B.5	[XXX]
Description of measurement methods and procedures to be applied:	Data can be obtained from i) Device installed in machine measuring operating hours or ii) The palm oil mills and composting facilities logbooks.
QA/QC procedures to be applied:	Confirmation by supervisor, attendance logbook of machine operator.
Any comment:	-

Data / Parameter:	OT _{machine,turning,y}
Data unit:	hour/year
Description:	Annual operating hours of turning machine
Source of data to be	Project owner
used:	
Value of data applied	[XXX]
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	Data can be obtained from
measurement methods	i) Device installed in machine measuring operating hours or
and procedures to be	ii) The palm oil mills and composting facilities logbooks.
applied:	
QA/QC procedures to	Confirmation by supervisor, attendance logbook of machine operator.
be applied:	
Any comment:	-

Data / Parameter:	DAF _{comp}
Data unit:	km/truck
Description:	Average incremental distance for composting transportation
Source of data to be	Project owner/compost buyer

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 35

used:	
Value of data:	[XXX]
Description of	Records of all dispatches of compost from the composting site and the
measurement methods	destination for the delivery of compost will be maintained at the plant.
and procedures to be	For each load/trip of compost taken out of the plant, the operator shall record the
applied:	distance to destination by speaking to the carrier
	The total distance will be divided by the total number of trips to calculate the
	average distance.
QA/QC procedures to	Confirmation by supervisor & bills/invoices for compost delivery.
be applied:	
Any comment:	Data monitored and required for verification and issuance will be kept for a
	minimum of two years after the end of the crediting period or the last issuance of
	CERs for this programme activity, whichever occurs later. This will be calculated
	annually.

Data / Parameter:	CT _{v, comp}
Data unit:	t/truck
Description:	Average truck capacity for compost transportation
Source of data to be	Capacity specification of the truck fleet
used:	
Value of data:	[XXX]
Description of	Analysis of the composition of the truck fleet and respective load capacity of
measurement methods	each truck. Keeping records (log sheets) of the trucks transporting compost that
and procedures to be	depart from the composting sites.
applied:	
QA/QC procedures to	Data from weighbridge measurement will be used to cross check the recorded
be applied:	data
Any comment:	Data monitored and required for verification and issuance will be kept for a
	minimum of two years after the end of the crediting period or the last issuance of
	CERs for this programme activity, whichever occurs later. This will be calculated
	annually.

Data / Parameter:	Oxygen Level in the compost
Data unit:	% of dissolvent oxygen content
Description:	Percentage of dissolved oxygen content in the compost
Source of data to be	On-site measurements
used:	
Value of data:	[XXX]
Description of	The oxygen level will be recorded daily using a handheld oxygen meter with
measurement methods	lancets of at least 1 m length and sampling with maximum margin of error of
and procedures to be	10% at a 95% confidence level. The compost pile will be turned if the oxygen
applied:	level drops to below 10% to ensure the compost pile is in aerobic condition at all
	times.
QA/QC procedures to	The oxygen meter will record data from at least 2 different points in the windrow
be applied:	to ensure homogeneity of reading taken. Average value of these data will be used
	to determine the oxygen level of the windrow.
	The handheld oxygen meter will be calibrated annually as per manufacturers

Composting and Co-composting Programme of Activities (PoA) in Indonesia

page 36

CDM – Executive Board

	specification.			
Any comment:	In case oxygen content of the composting process is monitored and above 8%, the parameter $EF_{composting}$ can be set to zero for the portions of Q _y for which the			
	monitored oxygen content of the composting process.			

Data / Parameter:	Soil application of the compost in the plantation				
Data unit:	N/A				
Description:	Soil application of the compost in the plantation will be monitored				
Source of data to be used:	Project owner / plantation [XXX]				
Value of data:	N/A				
Description of measurement methods and procedures to be applied:	invoices if such exist. In situ verification of the proper soil application of the compost in a representative sample of the sites in the nearby plantations will be performed. Photographic evidences will be provided to demonstrate that the compost is				
QA/QC procedures to be applied: Any comment:	properly applied. All bills/invoices of compost sale will include information about compost end- use destination. Data monitored and required for verification and issuance will be kept for a				
minimum of two years after the end of the crediting period or the last issu CERs for this programme activity, whichever occurs later.					

Data / Parameter:	Quality Control Program to the Composting work				
Data unit:	N/A				
Description:	monitoring the conditions and procedures that ensure the aerobic condition of the waste during the composting process				
Source of data to be used:	Project owner (composting plant team work and Technical Advisor)				
Value of data: N/A					
Description of measurement methods and procedures to be applied:	 Turning of the material every 2 days Regular check of the compost quality leaving the composting facility (i.e. brown color and homogenous shows low C/N ratio: good quality; dark color and heterogeneous shows high C/N ratio: bad quality) 				
QA/QC procedures to be applied:	 Check of the operating hours of turning machine which equals a defined amount of compost during the period as turning machine operates at fixed speed. Pictures will be taken of the final compost product on frequent basis. Quality is assured by regular turning anyhow. 				
Any comment:	-				

Data / Parameter:	MD _{y,reg}				
Data unit:	tonnes of CH ₄ / year				
Description:	Quantity of methane that would have to be captured and combusted to comply with the prevailing regulations				
Source of data to be used:	Current regulations in the Host Country				

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 37

Value of data:	[XXX]			
Description of	Current regulations in the host country do not require the capture and combustion			
measurement methods	Of methane.			
and procedures to be				
applied:	Changes in the legislation requirements will be monitored.			
QA/QC procedures to	-			
be applied:				
Any comment:	To be updated according to the latest regulation for each CPA			

Data / Parameter:	f				
Data unit:	%				
Description:	Fraction of methane captured at the SWDS and flared, combusted or used in another manner				
Source of data to be used:	Data available from palm oil mill site				
Value of data applied for the purpose of calculating expected emission reductions in section B.5	[XXX]				
Justification of the choice of data or description of measurement methods and procedures actually applied:	No methane is captured and flared at the palm oil mill's facilities. The continuance of no capturing/flaring will be checked on-site during every verification site visit.				
QA/QC procedures to be applied:	-				
Any comment:	To be carried out on an annual basis.				

Parameters to be **calculated** (not measured):

Data / Parameter:	BE _{CH4,SWDS,y}				
Data unit:	tCO2/year				
Description:	Yearly methane generation potential of the solid waste composted by the project during the years "x" from the beginning of the project activity $(x=1)$ up to the year 'y'				
Source of data to be	Calculated from other monitored parameters (as explained in section B.5.2,				
used:	baseline a))				
Value of data	[XXX] (calculation provided in the spreadsheet, this value is for the first year)				
Description of	Calculated				
measurement methods					
and procedures to be					
applied:					
QA/QC procedures to	N/A				
be applied:					

Any comment:

Composting and Co-composting Programme of Activities (PoA) in Indonesia

This parameter is not measured directly.

CDM – Executive Board

page 38

2				
	r			
Data / Parameter:	MEP _{v,ww}			
Data unit:	tCO2/year			
Description:	Methane emission potential in the year 'y' of the wastewater co-composted.			
Source of data to be	Calculated from other monitored parameters (as explained in section B.5.2,			
used:	baseline b))			
Value of data	[XXX] (calculation provided in the spreadsheet, this value is for the first year)			
Description of	Calculated			
measurement methods				
and procedures to be				
applied:				
QA/QC procedures to	N/A			
be applied:				
Any comment:	This parameter is not measured directly.			

C.1. Please indicate the level at which environmental analysis as per requirements of the CDM modalities and procedures is undertaken. Justify the choice of level at which the environmental analysis is undertaken:

 \square Please tick if this information is provided at the PoA level. In this case sections C.2. and C.3. need not be completed in this form.

C.2. Documentation on the analysis of the environmental impacts, including transboundary impacts:

[environmental impact]

C.3. Please state whether an environmental impact assessment is required for a typical CPA, included in the <u>programme of activities (PoA), in accordance with the host Party laws/regulations</u>:

[Apply latest rules. Currently no EIA is required]

SECTION D. Stakeholders' comments

D.1. Please indicate the level at which local stakeholder comments are invited. Justify the choice:

 \Box Please tick if this information is provided at the PoA level. In this case sections D.2. to D.4. need not be completed in this form.

Composting and Co-composting Programme of Activities (PoA) in Indonesia

UNFCCC

CDM – Executive Board

page 39

D.2. Brief description how comments by local stakeholders have been invited and compiled:

A local stakeholder consultation was carried out on [date] in [location].

[description of stakeholder consultation and attendees]

D.3. Summary of the comments received:

The following are the main issues raised by the participants during the consultation:

1. [XXX]

2. [XXX]

[.....]

Below are the minutes of meeting of the Stakeholder Consultation:

[minutes]

D.4. Report on how due account was taken of any comments received:

[XXX]

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 40

Annex 1

CONTACT INFORMATION ON ENTITY/INDIVIDUAL RESPONSIBLE FOR THE <u>SMALL-SCALE CPA</u>

Organization:	
Street/P.O.Box:	
Building:	
City:	
State/Region:	
Postfix/ZIP:	
Country:	
Telephone:	
FAX:	
E-Mail:	
URL:	
Represented by:	
Title:	
Salutation:	
Last Name:	
Middle Name:	
First Name:	
Department:	
Mobile:	
Direct FAX:	
Direct tel:	
Personal E-Mail:	

Composting and Co-composting Programme of Activities (PoA) in Indonesia

CDM – Executive Board

page 41

UNFCCC

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

[insert]

Annex 3

BASELINE INFORMATION

Baseline emission calculation is shown in section B.5.2

FFB Process

Total FFB Production (ton/year)					
Year	20[XX]				Average
Total					

[profile of lagoons]

Annex 4

MONITORING INFORMATION

The monitoring parameters and description of monitoring is shown in section B.6.1